Modeling of Equilibrium Point Trajectory Control
نویسنده
چکیده
MODELING OF EQUILIBRIUM POINT TRAJECTORY CONTROL IN HUMAN ARM MOVEMENTS by Kai Chen The underlying concept of the Equilibrium Point Hypothesis (EPH) is that the CNS provides a virtual trajectory of joint motion, representing spacing and timing, with actual movement dynamics being produced by interactions of limb inertia, muscle viscosity and speed/position feedback from muscle spindles. To counter criticisms of the EPH, investigators have proposed the use of complex virtual trajectories, non-linear damping, stiffness and time varying stiffness to the EPH model. While these features allow the EPH to adequately produce human joint velocities, they conflict with the EPH’s premise of simple pre-planned monotonic control of movement trajectory. As a result, this study proposed an EPH based method, which provides a simpler mechanism in motor control without conflict with the core advantages of the original approach. This work has proposed relative damping as an addition to the EPH model to predict the single and two joint arm movements. This addition results in simulated data that not only closely match experimental angle data, but also match the experimental joint torques. In addition, it is suggested that this modified model can be used to predict the multi-joint angular trajectories with fast and normal velocities, without the need for time varying or non-linear stiffness and damping, but with simple monotonic virtual trajectories. In the following study, this relative damping model has been further enhanced with an EMG-based determination of the virtual trajectory and with physiologically realistic neuromuscular delays. The results of unobstructed voluntary movement studies suggest that the EPH models use realistic impedance values and produce desired joint trajectories and joint torques in unperturbed voluntary arm movement. A subsequent study of obstructed voluntary arm movement extended the relative damping concept, and incorporated the influential factors of the mechanical behavior of the neural, muscular and skeletal system in the control and coordination of arm posture and movement. A significant problem of the study is how this information should be used to modify control signals to achieve desired performance. This study used an EPH model to examine changes of controlling signals for arm movements in the context of adding perturbation/load in the form of forces/torques. The mechanical properties and reflex actions of muscles of the elbow joint were examined. Brief unexpected torque/force pulses of identical magnitude and time duration were introduced at different stages of the movement in a random order by a pre-programmed 3 degree of freedom (DOF) robotic arm (MOOG FCS HapticMaster). The results show that the subjects may maintain the same control parameters (virtual trajectory, stiffness and damping) regardless of added perturbations that cause substantial changes in EMG activity and kinematics. MODELING OF EQUILIBRIUM POINT TRAJECTORY CONTROL IN HUMAN ARM MOVEMENTS
منابع مشابه
Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کاملGeometric Modeling of Dubins Airplane Movement and its Metric
The time-optimal trajectory for an airplane from some starting point to some final point is studied by many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional spaces. In this model, the system has independent bounded control over both the altitude velocity and the turning rate of airplane movement in a non-obstacle space. Here, in this paper a g...
متن کاملEquilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.
For the last 20 years, it has been hypothesized that well-coordinated, multijoint movements are executed without complex computation by the brain, with the use of springlike muscle properties and peripheral neural feedback loops. However, it has been technically and conceptually difficult to examine this "equilibrium-point control" hypothesis directly in physiological or behavioral experiments....
متن کاملOptimal Trajectory Study of a Small Size Waverider and Wing-Body Reentry Vehicle at Suborbital Entry Speed of Approximately 4 km/s with Dynamic Pressure and Heat Rate Constraint
A numerical trajectory optimization study of two types of lifting-entry reentry vehicle has been presented at low suborbital speed of 4.113 km/s and -15 degree entry angle. These orbital speeds are typical of medium range ballistic missile with ballistic range of approximately 2000 km at optimum burnout angle of approximately 41 degree for maximum ballistic range. A lifting reentry greatly enha...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کامل